798 research outputs found

    Preliminary design of a supersonic cruise aircraft high-pressure turbine

    Get PDF
    Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study

    Alien Registration- Aceto, Mary J. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/25582/thumbnail.jp

    Graphical representation of covariant-contravariant modal formulae

    Get PDF
    Covariant-contravariant simulation is a combination of standard (covariant) simulation, its contravariant counterpart and bisimulation. We have previously studied its logical characterization by means of the covariant-contravariant modal logic. Moreover, we have investigated the relationships between this model and that of modal transition systems, where two kinds of transitions (the so-called may and must transitions) were combined in order to obtain a simple framework to express a notion of refinement over state-transition models. In a classic paper, Boudol and Larsen established a precise connection between the graphical approach, by means of modal transition systems, and the logical approach, based on Hennessy-Milner logic without negation, to system specification. They obtained a (graphical) representation theorem proving that a formula can be represented by a term if, and only if, it is consistent and prime. We show in this paper that the formulae from the covariant-contravariant modal logic that admit a "graphical" representation by means of processes, modulo the covariant-contravariant simulation preorder, are also the consistent and prime ones. In order to obtain the desired graphical representation result, we first restrict ourselves to the case of covariant-contravariant systems without bivariant actions. Bivariant actions can be incorporated later by means of an encoding that splits each bivariant action into its covariant and its contravariant parts.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Robustness of Equations Under Operational Extensions

    Full text link
    Sound behavioral equations on open terms may become unsound after conservative extensions of the underlying operational semantics. Providing criteria under which such equations are preserved is extremely useful; in particular, it can avoid the need to repeat proofs when extending the specified language. This paper investigates preservation of sound equations for several notions of bisimilarity on open terms: closed-instance (ci-)bisimilarity and formal-hypothesis (fh-)bisimilarity, both due to Robert de Simone, and hypothesis-preserving (hp-)bisimilarity, due to Arend Rensink. For both fh-bisimilarity and hp-bisimilarity, we prove that arbitrary sound equations on open terms are preserved by all disjoint extensions which do not add labels. We also define slight variations of fh- and hp-bisimilarity such that all sound equations are preserved by arbitrary disjoint extensions. Finally, we give two sets of syntactic criteria (on equations, resp. operational extensions) and prove each of them to be sufficient for preserving ci-bisimilarity.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    On the Executability of Interactive Computation

    Full text link
    The model of interactive Turing machines (ITMs) has been proposed to characterise which stream translations are interactively computable; the model of reactive Turing machines (RTMs) has been proposed to characterise which behaviours are reactively executable. In this article we provide a comparison of the two models. We show, on the one hand, that the behaviour exhibited by ITMs is reactively executable, and, on the other hand, that the stream translations naturally associated with RTMs are interactively computable. We conclude from these results that the theory of reactive executability subsumes the theory of interactive computability. Inspired by the existing model of ITMs with advice, which provides a model of evolving computation, we also consider RTMs with advice and we establish that a facility of advice considerably upgrades the behavioural expressiveness of RTMs: every countable transition system can be simulated by some RTM with advice up to a fine notion of behavioural equivalence.Comment: 15 pages, 0 figure

    2-Nested Simulation is not Finitely Equationally Axiomatizable

    Get PDF
    2-nested simulation was introduced by Groote and Vaandrager [10] as the coarsest equivalence included in completed trace equivalence for which the tyft/tyxt format is a congruence format. In the lineartime-branching time spectrum of van Glabbeek [8], 2-nested simulationis one of the few equivalences for which no finite equational axiomatization is presented. In this paper we prove that such an axiomatizationdoes not exist for 2-nested simulation.Keywords: Concurrency, process algebra, basic CCS, 2-nested simulation, equational logic, complete axiomatizations

    Concurrent constraint programming with process mobility

    Get PDF
    We propose an extension of concurrent constraint programming with primitives for process migration within a hierarchical network, and we study its semantics. To this purpose, we first investigate a "pure " paradigm for process migration, namely a paradigm where the only actions are those dealing with transmissions of processes. Our goal is to give a structural definition of the semantics of migration; namely, we want to describe the behaviour of the system, during the transmission of a process, in terms of the behaviour of the components. We achieve this goal by using a labeled transition system where the effects of sending a process, and requesting a process, are modeled by symmetric rules (similar to handshaking-rules for synchronous communication) between the two partner nodes in the network. Next, we extend our paradigm with the primitives of concurrent constraint programming, and we show how to enrich the semantics to cope with the notions of environment and constraint store. Finally, we show how the operational semantics can be used to define an interpreter for the basic calculus.

    Axiomatizing Prefix Iteration with Silent Steps

    Get PDF
    Prefix iteration is a variation on the original binary version of the Kleene star operation P*Q, obtained by restricting the first argument to be an atomic action. The interaction of prefix iteration with silent steps is studied in the setting of Milner's basic CCS. Complete equational axiomatizations are given for four notions of behavioural congruence over basic CCS with prefix iteration, viz. branching congruence, eta-congruence, delay congruence and weak congruence. The completeness proofs for eta-, delay, and weak congruence are obtained by reduction to the completeness theorem for branching congruence. It is also argued that the use of the completeness result for branching congruence in obtaining the completeness result for weak congruence leads to a considerable simplification with respect to the only direct proof presented in the literature. The preliminaries and the completeness proofs focus on open terms, i.e. terms that may contain process variables. As a by-product, the omega-completeness of the axiomatizations is obtained as well as their completeness for closed terms. AMS Subject Classification (1991): 68Q10, 68Q40, 68Q55.CR Subject Classification (1991): D.3.1, F.1.2, F.3.2.Keywords and Phrases: Concurrency, process algebra, basic CCS, prefix iteration, branching bisimulation, eta-bisimulation, delay bisimulation, weak bisimulation, equational logic, complete axiomatizations

    Nested Semantics over Finite Trees are Equationally Hard

    Get PDF
    This paper studies nested simulation and nested trace semantics over the language BCCSP, a basic formalism to express finite process behaviour. It is shown that none of these semantics affords finite (in)equational axiomatizations over BCCSP. In particular, for each of the nested semantics studied in this paper, the collection of sound, closed (in)equations over a singleton action set is not finitely based

    CONCUR Test-Of-Time Award 2020 Announcement

    Get PDF
    This short article announces the recipients of the CONCUR Test-of-Time Award 2020
    corecore